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1. Forward

In many cases of practical importance, chaotic instabilities limit the performance of devices,
such as lasers and electronic oscillators, and hence it is desirable to devise schemes to control
the instabilities. During the period of this program, we have developed novel algorithms that
efficiently control and synchronize chaotic dynamics of high-speed and high-dimensional sys-
tems using small perturbations. We determined the sensitivity of the schemes to noise and
slow variation in the system parameters and found that robust controllers and synchronizers
can be constructed, but care must be applied in their design: in some situations, dynamical
systems can amplify noise by extreme amounts even under conditions when the system is
stable. The research has uncovered several fundamental issues related to the control and
synchronization of nonlinear systems, which we anticipate will lead to improved performance
of devices that are based on nonlinear systems and to the development of chaos-based com-
munication systems, for example. In addition, we have compared experimental observations
with detailed theoretical models of the nonlinear dynamical systems to further enhance our
understanding of the control and synchronization processes.
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4. Statement of the problem

One major area of research of the nonlinear dynamics community is the investigation
of novel techniques for controlling and synchronizing the dynamics of systems using only
small perturbations. The goals of this project include improving the performance of devices
whose behavior is degraded by instabilities and chaos, and developing new devices that take
advantage of the unique capabilities of the control and synchronization schemes.

The primary purpose of the proposed research was to test experimentally the conditions
under which extreme amplification of noise occurs in controlled and synchronized chaotic
systems. Simple moderate-dimension electronic and optical chaotic devices were designed
and constructed, their stability was be characterized, accurate mathematical models of the
devices were devised and analyzed, and a detailed comparison between experimental ob-
servations and theoretical predictions were undertaken. One outcome of this research is
the identification of generic design procedures for the robust control and synchronization of
chaotic systems. Hence, the research is not specific to the particular electronic and optical
devices investigated as part of this program; rather, it should impact our understanding of
stability of a wide class of dynamical systems.

5. Summary of the most important results

5.1. Synchronization of hyperchaotic oscillators

During this research period, we completed our analysis of our experiments on synchronizing
coupled hyperchaotic oscillators. We were invited to describe our observations and anal-
yses in a special Focus Issue on Chaotic Control and Synchronization in the International
Journal of Bifurcations and Chaos. In our experiments, we investigated attractor bubbling
in a system of two coupled hyperchaotic electronic circuits. The degree of synchronization
over a range of coupling strengths for two different coupling schemes was measured to iden-
tify bubbling. The circuits displayed regimes of both attractor bubbling and high-quality
synchronization. For the coupling scheme where high-quality synchronization was observed,
the transition to bubbling is “soft” and its scaling with coupling strength near the transi-
tion point does not fit into the known categories of transition types. We also compared the
observed behavior to several proposed criteria for estimating the regime of high-quality syn-
chronization. It is found that none of these methods is completely satisfactory for predicting
accurately the regimes of attractor bubbling and high-quality synchronization.

As an example of our experimental finding, we show the quality of synchronization for
a particular choice of a coupling scheme of the oscillators. Figure 5.1 shows the experimen-
tally observed degree of synchronization and the numerically determined largest transverse
Lyapunov exponent. From Fig. 5.1(b), it is seen that the synchronization manifold is asymp-
totically stable for all coupling strengths larger than 0.26 since the exponent crosses zero at
this point and remains negative for larger coupling strengths. Experimentally, we observe
a small region of attractor bubbling occurring for the range of coupling strengths between
0.25 and 0.32. No desynchronization events greater than the noise level (|x, (t)|3,45 < 1.0



V2 or 0.5% of the maximum possible value of |x, (¢)|* on the attractor) are observed for
coupling strengths greater than 0.32. Thus, there is a large range of coupling strengths
where high-quality synchronization can be achieved despite the hyperchaotic nature of the
system. Our observations are consistent with those of previous researchers who found that
the transition to high-quality synchronization for this coupling scheme occurred for a cou-
pling strength slightly higher than that expected based on the negativity of the transverse
Lyapunov exponents.
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Figure 5.1: (a) Quality of synchronization as a funtion of coupling strength for coupled
hyperchaotic oscillators. (b) Theoretical measure of the stability of the synchronized state
as a funciton of the coupling strength. The systems should be synchronized when the curves
pass below zero.

Additional information concerning the bubbling transition can be obtained by observing
the scaling of |x, (t)[3, 45 in the vicinity of the transition. Venkataramani et al. predict
that the transition can be “hard” (the bursts appear abruptly with large amplitude as the
coupling strength is varied) or “soft” (the maximum burst amplitude increases continuously
from zero), and that the symmetry of the coupling has a fundamental effect on the transition.
From Fig. 5.1(a), it is seen that the transition is soft. For such a transition and the one-
way (asymmetric) coupling scheme used in our experiment, they predict that |x (t)|?\/[ Ax ™~
(cp — ¢)?, where ¢, is the coupling strength at which the transition occurs. On the contrary,
we observe that |x (t)[3; 45 ~ (¢ — ¢), as illustrated by the solid straight line shown in the
figure. The fit between our data and the straight line is good in that the deviation from



the straight line is comparable to the observed data point-to-data point variation, which is
a reasonable estimate of our experimental error. Our observation indicates the existence of
a new type of bubbling transition, or that the lowest-order nonlinear contribution to the
transverse dynamics has an even symmetry even though the coupling has an odd symmetry.

5.2. Synchronization of periodic oscillators

In addition to investigating synchronization of chaotic oscillators, we have also conducted
two experiments in which we investigated the synchronization of coupled periodic oscillators.
Each experimental system consisted of two identical coupled electronic periodic oscillators
that display bursts of desynchronization events similar to those observed previously in cou-
pled chaotic systems. We measured the degree of synchronization as a function of coupling
strength. In the first experiment, high-quality synchronization is achieved for all coupling
strengths above a critical value. In the second experiment, no high-quality synchronization
is observed. We compared our results to the predictions of the several proposed criteria for
synchronization. We find that none of the criteria accurately predict the range of coupling
strengths over which high-quality synchronization is observed. The paper describing our
research appeared in Chaos.

As an example of our results from one of the experiments, the dynamical behavior of
a single periodic oscillator in the absence of noise is shown in Fig. 5.2(a) (solid line). A
brief, sufficiently large perturbation to the system when the trajectory is in the vicinity
of V.= —V,/G (dashed line) causes it to undergo a large excursion away from the orbit
before returning, as shown by the dotted line in Fig. 5.2(a). Once the trajectory crosses the
threshold, the growth rate of the perturbation is very large. Thus, a perturbation during the
brief interval when the trajectory is in the neighborhood of the threshold can be amplified
significantly. This behavior resembles the bursting observed in coupled chaotic double scroll
oscillators evolving near the saddle point at the origin of their phase space, as discussed
previously.

In the experiment, the slave oscillator is coupled to the master by injecting a current
Isyne = vC(V,, —V5) into the slave circuit at the same node as the drive signal. We bias both
oscillators very close to the threshold. For this bias value and the inherent level of noise in
the system, the master oscillator never crosses the threshold and remains on the trajectory
shown as the solid line in Fig. 5.2(a). A small Gaussian white noise current (bandwidth from
10 Hz to 1 kHz, RMS current ~ 0.5% of the characteristic oscillator current) is injected into
the slave oscillator. When there is no coupling (v = 0), the slave occasionally crosses the
threshold and bursts away from the periodic orbit. For the oscillators to be synchronized,
the coupling has to be chosen so that the slave never undergoes a burst.

For each of several different values of the coupling strength, we record a long time series
of the Euclidean norm |z,| = |V, — V;|. To quantify the degree of synchronization, we
determine from these time series the average distance from the synchronization manifold
|z |, and the maximum observed value of the distance from the manifold |z, |_, for each
coupling strength, as shown in Fig. 5.2(b). For coupling strengths between 0.6 and 0.8 x 10*
s, |1, 1S on the order of the size of the orbit (~ 2 V) even though |z, | _ is very small
(~ 1% of the orbit size), implying that there exist large, brief, occasional desynchronization



events even when the oscillators are synchronized on average. From the figure, it is seen that
the large desynchronization events only cease for v > 1.3 x 10* s7, as indicated by the large
drop in |z |,
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Figure 5.2: Dynamics of coupled periodic oscillators. (a) Phase-space portrait. (b) Quality
of synchronization as a funciton of the coupling strength between the oscillators.

Our observations cannot be explained by any of the current theories, strongly suggesting
that our understanding of the synchronization process is incomplete.

5.3. A new source of ultra-high-speed optical chaos

During the period of this grant, we have developed an ultra-high speed chaotic laser system
that has been used at a test-bed to investigate the fundamental aspects of chaos control
and synchronization on fast time scales, which will serve as the building block of a chaotic
communication system. It consists of a semiconductor laser with incoherent feedback.

In this device, shown schematically in Fig. 5.3, light generated by the laser (any com-
mercial semiconductor laser will work in this application) is sent to an unequal-path Mach-
Zehnder interferometer. The interferometer converts variations in the frequency of the laser
(which is sensitive to the injection current) into variations in the intensity of the light. These
intensity variations are detected by a silicon photodiode, converted to a voltage, amplified,
delayed in time by an amount 7 using a transmission line, and summed with the dc injection
current ¢pc using a bias-T.
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Figure 5.3: Experimental setup of the new source of optical chaos consisting of a semicon-
ductor laser in the presence of incoherent feedback.

For very low amplifier gain, the laser operates in a stable fashion. As the gain is increased,
the dynamics switch to a periodic pattern at a well defined and reproducible value of the gain,
as shown in Fig. 5.4a. The corresponding power spectrum of the oscillations is shown in
Fig. 5.4b. Note that the oscillations are related to an oscillation in the frequency of the laser
and not the laser intensity since we detect that output of the Mach-Zehnder interferometer.
The observation of a transition from a steady to a periodic dynamical pattern indicates that
the laser system has passed through a Hopf bifurcation.

For sufficiently high amplifier gain, this new device displays chaotic dynamics whose time
scale is of the order of 3 ns, as shown in Fig. 5.4c and 5.4d. We find that the complexity of
the oscillations can be controlled by adjusting the time delay. The time scale of the dynamics
is also controllable by a bandwidth-limiting filter contained in the loop and can be as small
as a ~300 ps. We have conducted a preliminary characterization of this new dynamical
system. Future plans are to control the ultra-high-speed dynamics using controlling chaos
methods, encoding messages within the chaotic dynamics, and synchronizing two chaotic
lasers.

We have also developed a detailed mathematical model of an ultra-high speed chaotic laser
system in collaboration with Mr. Ilan Harrington of Prof. Socolar’s theoretical nonlinear
dynamics group. The model development starts from the first principles of semiconductor
laser theory and accounts for all pertinent details of the experiment. Parameters appearing
in this model, such as the semiconductor linewidth enhancement parameter and decay rates,
for example, have been determined by auxiliary experiments that are sensitive to only one
or a few of the parameters. We find very good agreement between theoretical simulations
of the model and the experimental observations.
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Figure 5.4: Dynamical behavior of the new source of chaotic optical frequency flucations.
For low amplifier gain, the frequency of the laser undergoes periodic oscillations as seen
in the (a) time domain and (b) frequency domain. For higher amplifier gain, the system
display chaotic fluctuation in the frequency of the light generated by the laser as seen in the
(c) time domain and (d) frequency domain.

5.4. An array of couple chaotic electronic elements

We have also developed an array of coupled chaotic electronic circuits, a paradigm of a rela-
tively simple system displaying spatiotemporal complexity. The individual circuit elements
operate in the chaotic regime characterized by a single positive Lyapunov exponent; the
chaotic attractor in shown in Fig. 5.5.

The circuits are based on a design by Rulkov because the strange attractor characterizing
this system contains unstable sets that are capable of causing extreme amplification of per-
turbations and we have found that it is easier to match the components of this system. We
constructed 64 oscillators and have coupled them in various configurations. The dynamics of
all three variables for each oscillator can be recorded simultaneously and the deviations away
from the desired state have been determined. We have conducted preliminary experiments
to ascertain the robustness of the control for increasing number of oscillators (from 1 to 64)
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Figure 5.5: Chaotic attractor characterizing a single element in the array of coupled chaotic
oscillators.

for various amounts of white noise injected into the collection of oscillators.

5.5. Wide-aperture nonlinear optical resonator

To fully explore the control and synchronization of very complex dynamics, bordering on the
state of turbulence found in some fluid flows, for example, we are investigating the behavior
of a wide-aperture nonlinear optical resonator. The device is based on a nonlinear optical
element known as a liquid crystal light valve (LCLV) that is placed in a simple optical feed-
back configuration. LCLV’s are optically addressable spatial light modulators designed for
state-of-the-art display applications; our application uses a LCLV whose reflection charac-
teristics depend on the intensity of light illuminating each pixel. A time sequence of the
observed dynamics is shown in Fig. 5.6. The goal of the project is to determine whether the
complex spatio-temporal dynamics can be controlled over the entire aperture by measuring
and feeding back to a single spatial location.

We have developed a detailed mathematical model for the dynamics observed in the
nonlinear resonator and performed experiments to determine all of the model parameters.
In addition, we have set up a two-axis acousto-optic laser beam deflector that will be used to
deliver control perturbations to the system at any desired location within the field of view.
In the future, we intend to control the dynamics of the nonlinear resonator and determine
the minimum number and pattern of spots that must be adjusted to effect control.
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Figure 5.6: A temporal sequence of the observed intensity of light circulating in the broad-
area nonlinear optical resonator.
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